How to share when context matters: The Möbius Value As a Generalized Solution for Cooperative Games∗
نویسندگان
چکیده
All quasivalues rest on a set of three basic axioms (efficiency, null player, and additivity), which are augmented with positivity for random order values, and with positivity and partnership for weighted values. We introduce the concept of Möbius value associated with a sharing system and show that this value is characterized by the above three axioms. We then establish that (i) a Möbius value is a random order value if and only if the sharing system is stochastically rationalizable and (ii) a Mö bius value is a weighted value if and only if the sharing system satisfies the Luce choice axiom. Jel Classification: C71, D46, D63
منابع مشابه
Cooperative Benefit and Cost Games under Fairness Concerns
Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...
متن کاملAlternative Axiomatic Characterizations of the Grey Shapley Value
The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapl...
متن کاملImproved Profitability and Competition in Two Level Supply Chain by Non-Cooperative Games
This article by modeling a non-cooperative dynamic game tries to improve profitability and competition. This paper has considered how the manufacturer interacts with multiple competitor distributors. Each distributor also determines the optimal distribution price and inventory replenishment policies to maximize their profits. The issue form a non-cooperative dynamic game. Distributors formulate...
متن کاملA Closed-Form Formula for the Fair Allocation of Gains in Cooperative N-Person Games
Abstract This paper provides a closed-form optimal solution to the multi-objective model of the fair allocation of gains obtained by cooperation among all players. The optimality of the proposed solution is first proved. Then, the properties of the proposed solution are investigated. At the end, a numerical example in inventory control environment is given to demonstrate the application and t...
متن کاملSolving a Two-Period Cooperative Advertising Problem Using Dynamic Programming
Cooperative advertising is a cost-sharing mechanism in which a part of retailers' advertising investments are financed by the manufacturers. In recent years, investment among advertising options has become a difficult marketing issue. In this paper, the cooperative advertising problem with advertising options is investigated in a two-period horizon in which the market share in the second period...
متن کامل